Files
C/DeitelC/Chapter7/test44.c
2025-10-14 05:00:53 +03:00

128 lines
4.8 KiB
C

#include <stdio.h>
#define SIZE 12
// Function prototypes
void mazeTraverse(char maze[SIZE][SIZE], int currentRow, int currentCol, int startRow, int startCol, int visited);
void printMaze(char maze[SIZE][SIZE]);
int main() {
// Initialize the maze
char maze[SIZE][SIZE] = {
{'#','#','#','#','#','#','#','#','#','#','#','#'},
{'#','.','.','.','#','.','.','.','.','.','.','#'},
{'.','.','#','.','#','.','#','#','#','#','.','#'},
{'#','#','#','.','#','.','.','.','.','#','.','#'},
{'#','.','.','.','.','#','#','#','.','#','.','.'},
{'#','#','#','#','.','#','.','#','.','#','.','#'},
{'#','.','.','#','.','#','.','#','.','#','.','#'},
{'#','#','.','#','.','#','.','#','.','#','.','#'},
{'#','.','.','.','.','.','.','.','.','#','.','#'},
{'#','#','#','#','#','#','.','#','#','#','.','#'},
{'#','.','.','.','.','.','.','#','.','.','.','#'},
{'#','#','#','#','#','#','#','#','#','#','#','#'}
};
// Starting position (from the maze - row 2, column 0)
int startRow = 2, startCol = 0;
printf("Initial Maze:\n");
printMaze(maze);
printf("\nStarting maze traversal...\n\n");
// Start maze traversal
mazeTraverse(maze, startRow, startCol, startRow, startCol, 0);
return 0;
}
// Recursive function to traverse the maze using right-hand rule
void mazeTraverse(char maze[SIZE][SIZE], int currentRow, int currentCol,
int startRow, int startCol, int visited) {
// Mark current position with 'X' if it's not the start position
if (!(currentRow == startRow && currentCol == startCol) || visited > 0) {
maze[currentRow][currentCol] = 'X';
}
// Display the maze after each move
printf("Step %d:\n", visited + 1);
printMaze(maze);
printf("\n");
// Check if we've reached an exit (on the border but not at start)
if ((currentRow == 0 || currentRow == SIZE-1 || currentCol == 0 || currentCol == SIZE-1) &&
!(currentRow == startRow && currentCol == startCol)) {
printf("Exit found at (%d, %d)!\n", currentRow, currentCol);
return;
}
// Check if we've returned to start (no exit)
if (visited > 0 && currentRow == startRow && currentCol == startCol) {
printf("No exit found - returned to starting position.\n");
return;
}
// Right-hand rule: always keep right hand on the wall
// We'll check directions in this order: right, down, left, up
// This simulates always trying to turn right first
// Try moving in each direction according to right-hand rule
int moved = 0;
// Array of possible moves: right, down, left, up
int directions[4][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};
// Find which direction we're currently facing (simplified approach)
// For simplicity, we'll check all directions and prioritize right turns
// Check right (relative to current direction - simplified)
int newRow, newCol;
// Try to move while following right-hand wall
// The algorithm: always try to turn right, if not possible go straight,
// if not possible turn left, if not possible turn around
// For this implementation, we'll use a simplified approach:
// Check all four directions and move to the first valid one that follows right-hand rule
for (int i = 0; i < 4 && !moved; i++) {
// Check directions in a specific order to simulate right-hand rule
int dirOrder[4] = {0, 1, 2, 3}; // right, down, left, up
newRow = currentRow + directions[dirOrder[i]][0];
newCol = currentCol + directions[dirOrder[i]][1];
// Check if the new position is valid and not a wall
if (newRow >= 0 && newRow < SIZE && newCol >= 0 && newCol < SIZE &&
maze[newRow][newCol] != '#') {
// Additional check to avoid immediate backtracking
if (maze[newRow][newCol] != 'X' ||
(newRow == startRow && newCol == startCol)) {
// Recursive call to continue traversal
mazeTraverse(maze, newRow, newCol, startRow, startCol, visited + 1);
moved = 1;
}
}
}
// If no move was possible and we're not at exit/start, we're stuck
if (!moved && !(currentRow == 0 || currentRow == SIZE-1 ||
currentCol == 0 || currentCol == SIZE-1) &&
!(currentRow == startRow && currentCol == startCol)) {
printf("Stuck at position (%d, %d)\n", currentRow, currentCol);
}
}
// Function to print the maze
void printMaze(char maze[SIZE][SIZE]) {
for (int i = 0; i < SIZE; i++) {
for (int j = 0; j < SIZE; j++) {
printf("%c ", maze[i][j]);
}
printf("\n");
}
}