newStep.v
This commit is contained in:
674
RTL/PROCESSOR/femtorv32_gracilis.v
Normal file
674
RTL/PROCESSOR/femtorv32_gracilis.v
Normal file
@@ -0,0 +1,674 @@
|
||||
/******************************************************************************/
|
||||
// FemtoRV32, a collection of minimalistic RISC-V RV32 cores.
|
||||
//
|
||||
// This version: The "Gracilis", with full interrupt and
|
||||
// RVC compressed instructions support.
|
||||
// A single VERILOG file, compact & understandable code.
|
||||
//
|
||||
// Instruction set: RV32IMC + CSR + MRET
|
||||
//
|
||||
// Parameters:
|
||||
// Reset address can be defined using RESET_ADDR (default is 0).
|
||||
//
|
||||
// The ADDR_WIDTH parameter lets you define the width of the internal
|
||||
// address bus (and address computation logic).
|
||||
//
|
||||
// Bruno Levy, Matthias Koch, 2020-2021
|
||||
/******************************************************************************/
|
||||
|
||||
// Firmware generation flags for this processor
|
||||
`define NRV_ARCH "rv32imac"
|
||||
`define NRV_ABI "ilp32"
|
||||
`define NRV_OPTIMIZE "-O3"
|
||||
`define NRV_INTERRUPTS
|
||||
|
||||
module FemtoRV32(
|
||||
input clk,
|
||||
|
||||
output [31:0] mem_addr, // address bus
|
||||
output [31:0] mem_wdata, // data to be written
|
||||
output [3:0] mem_wmask, // write mask for the 4 bytes of each word
|
||||
input [31:0] mem_rdata, // input lines for both data and instr
|
||||
output mem_rstrb, // active to initiate memory read (used by IO)
|
||||
input mem_rbusy, // asserted if memory is busy reading value
|
||||
input mem_wbusy, // asserted if memory is busy writing value
|
||||
|
||||
input interrupt_request,
|
||||
|
||||
input reset // set to 0 to reset the processor
|
||||
);
|
||||
|
||||
parameter RESET_ADDR = 32'h00000000;
|
||||
parameter ADDR_WIDTH = 24;
|
||||
|
||||
/***************************************************************************/
|
||||
// Instruction decoding.
|
||||
/***************************************************************************/
|
||||
|
||||
// Extracts rd,rs1,rs2,funct3,imm and opcode from instruction.
|
||||
// Reference: Table page 104 of:
|
||||
// https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
|
||||
|
||||
// The destination register
|
||||
wire [4:0] rdId = instr[11:7];
|
||||
|
||||
// The ALU function, decoded in 1-hot form (doing so reduces LUT count)
|
||||
// It is used as follows: funct3Is[val] <=> funct3 == val
|
||||
(* onehot *)
|
||||
wire [7:0] funct3Is = 8'b00000001 << instr[14:12];
|
||||
|
||||
// The five imm formats, see RiscV reference (link above), Fig. 2.4 p. 12
|
||||
wire [31:0] Uimm={ instr[31], instr[30:12], {12{1'b0}}};
|
||||
wire [31:0] Iimm={{21{instr[31]}}, instr[30:20]};
|
||||
/* verilator lint_off UNUSED */ // MSBs of SBJimms not used by addr adder.
|
||||
wire [31:0] Simm={{21{instr[31]}}, instr[30:25],instr[11:7]};
|
||||
wire [31:0] Bimm={{20{instr[31]}}, instr[7],instr[30:25],instr[11:8],1'b0};
|
||||
wire [31:0] Jimm={{12{instr[31]}}, instr[19:12],instr[20],instr[30:21],1'b0};
|
||||
/* verilator lint_on UNUSED */
|
||||
|
||||
// Base RISC-V (RV32I) has only 10 different instructions !
|
||||
wire isLoad = (instr[6:2] == 5'b00000); // rd <- mem[rs1+Iimm]
|
||||
wire isALUimm = (instr[6:2] == 5'b00100); // rd <- rs1 OP Iimm
|
||||
wire isAUIPC = (instr[6:2] == 5'b00101); // rd <- PC + Uimm
|
||||
wire isStore = (instr[6:2] == 5'b01000); // mem[rs1+Simm] <- rs2
|
||||
wire isALUreg = (instr[6:2] == 5'b01100); // rd <- rs1 OP rs2
|
||||
wire isLUI = (instr[6:2] == 5'b01101); // rd <- Uimm
|
||||
wire isBranch = (instr[6:2] == 5'b11000); // if(rs1 OP rs2) PC<-PC+Bimm
|
||||
wire isJALR = (instr[6:2] == 5'b11001); // rd <- PC+4; PC<-rs1+Iimm
|
||||
wire isJAL = (instr[6:2] == 5'b11011); // rd <- PC+4; PC<-PC+Jimm
|
||||
wire isSYSTEM = (instr[6:2] == 5'b11100); // rd <- CSR <- rs1/uimm5
|
||||
|
||||
wire isALU = isALUimm | isALUreg;
|
||||
|
||||
/***************************************************************************/
|
||||
// The register file.
|
||||
/***************************************************************************/
|
||||
|
||||
reg [31:0] rs1;
|
||||
reg [31:0] rs2;
|
||||
reg [31:0] registerFile [31:0];
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (writeBack)
|
||||
if (rdId != 0)
|
||||
registerFile[rdId] <= writeBackData;
|
||||
end
|
||||
|
||||
/***************************************************************************/
|
||||
// The ALU. Does operations and tests combinatorially, except divisions.
|
||||
/***************************************************************************/
|
||||
|
||||
// First ALU source, always rs1
|
||||
wire [31:0] aluIn1 = rs1;
|
||||
|
||||
// Second ALU source, depends on opcode:
|
||||
// ALUreg, Branch: rs2
|
||||
// ALUimm, Load, JALR: Iimm
|
||||
wire [31:0] aluIn2 = isALUreg | isBranch ? rs2 : Iimm;
|
||||
|
||||
wire aluWr; // ALU write strobe, starts dividing.
|
||||
|
||||
// The adder is used by both arithmetic instructions and JALR.
|
||||
wire [31:0] aluPlus = aluIn1 + aluIn2;
|
||||
|
||||
// Use a single 33 bits subtract to do subtraction and all comparisons
|
||||
// (trick borrowed from swapforth/J1)
|
||||
wire [32:0] aluMinus = {1'b1, ~aluIn2} + {1'b0,aluIn1} + 33'b1;
|
||||
wire LT = (aluIn1[31] ^ aluIn2[31]) ? aluIn1[31] : aluMinus[32];
|
||||
wire LTU = aluMinus[32];
|
||||
wire EQ = (aluMinus[31:0] == 0);
|
||||
|
||||
/***************************************************************************/
|
||||
|
||||
// Use the same shifter both for left and right shifts by
|
||||
// applying bit reversal
|
||||
|
||||
wire [31:0] shifter_in = funct3Is[1] ?
|
||||
{aluIn1[ 0], aluIn1[ 1], aluIn1[ 2], aluIn1[ 3], aluIn1[ 4], aluIn1[ 5],
|
||||
aluIn1[ 6], aluIn1[ 7], aluIn1[ 8], aluIn1[ 9], aluIn1[10], aluIn1[11],
|
||||
aluIn1[12], aluIn1[13], aluIn1[14], aluIn1[15], aluIn1[16], aluIn1[17],
|
||||
aluIn1[18], aluIn1[19], aluIn1[20], aluIn1[21], aluIn1[22], aluIn1[23],
|
||||
aluIn1[24], aluIn1[25], aluIn1[26], aluIn1[27], aluIn1[28], aluIn1[29],
|
||||
aluIn1[30], aluIn1[31]} : aluIn1;
|
||||
|
||||
/* verilator lint_off WIDTH */
|
||||
wire [31:0] shifter =
|
||||
$signed({instr[30] & aluIn1[31], shifter_in}) >>> aluIn2[4:0];
|
||||
/* verilator lint_on WIDTH */
|
||||
|
||||
wire [31:0] leftshift = {
|
||||
shifter[ 0], shifter[ 1], shifter[ 2], shifter[ 3], shifter[ 4],
|
||||
shifter[ 5], shifter[ 6], shifter[ 7], shifter[ 8], shifter[ 9],
|
||||
shifter[10], shifter[11], shifter[12], shifter[13], shifter[14],
|
||||
shifter[15], shifter[16], shifter[17], shifter[18], shifter[19],
|
||||
shifter[20], shifter[21], shifter[22], shifter[23], shifter[24],
|
||||
shifter[25], shifter[26], shifter[27], shifter[28], shifter[29],
|
||||
shifter[30], shifter[31]};
|
||||
|
||||
/***************************************************************************/
|
||||
|
||||
wire funcM = instr[25];
|
||||
wire isDivide = isALUreg & funcM & instr[14];
|
||||
wire aluBusy = |quotient_msk; // ALU is busy if division is in progress.
|
||||
|
||||
// funct3: 1->MULH, 2->MULHSU 3->MULHU
|
||||
wire isMULH = funct3Is[1];
|
||||
wire isMULHSU = funct3Is[2];
|
||||
|
||||
wire sign1 = aluIn1[31] & isMULH;
|
||||
wire sign2 = aluIn2[31] & (isMULH | isMULHSU);
|
||||
|
||||
wire signed [32:0] signed1 = {sign1, aluIn1};
|
||||
wire signed [32:0] signed2 = {sign2, aluIn2};
|
||||
wire signed [63:0] multiply = signed1 * signed2;
|
||||
|
||||
/***************************************************************************/
|
||||
|
||||
// Notes:
|
||||
// - instr[30] is 1 for SUB and 0 for ADD
|
||||
// - for SUB, need to test also instr[5] to discriminate ADDI:
|
||||
// (1 for ADD/SUB, 0 for ADDI, and Iimm used by ADDI overlaps bit 30 !)
|
||||
// - instr[30] is 1 for SRA (do sign extension) and 0 for SRL
|
||||
|
||||
wire [31:0] aluOut_base =
|
||||
(funct3Is[0] ? instr[30] & instr[5] ? aluMinus[31:0] : aluPlus : 32'b0) |
|
||||
(funct3Is[1] ? leftshift : 32'b0) |
|
||||
(funct3Is[2] ? {31'b0, LT} : 32'b0) |
|
||||
(funct3Is[3] ? {31'b0, LTU} : 32'b0) |
|
||||
(funct3Is[4] ? aluIn1 ^ aluIn2 : 32'b0) |
|
||||
(funct3Is[5] ? shifter : 32'b0) |
|
||||
(funct3Is[6] ? aluIn1 | aluIn2 : 32'b0) |
|
||||
(funct3Is[7] ? aluIn1 & aluIn2 : 32'b0) ;
|
||||
|
||||
wire [31:0] aluOut_muldiv =
|
||||
( funct3Is[0] ? multiply[31: 0] : 32'b0) | // 0:MUL
|
||||
( |funct3Is[3:1] ? multiply[63:32] : 32'b0) | // 1:MULH, 2:MULHSU, 3:MULHU
|
||||
( instr[14] ? div_sign ? -divResult : divResult : 32'b0) ;
|
||||
// 4:DIV, 5:DIVU, 6:REM, 7:REMU
|
||||
|
||||
wire [31:0] aluOut = isALUreg & funcM ? aluOut_muldiv : aluOut_base;
|
||||
|
||||
/***************************************************************************/
|
||||
// Implementation of DIV/REM instructions, highly inspired by PicoRV32
|
||||
|
||||
reg [31:0] dividend;
|
||||
reg [62:0] divisor;
|
||||
reg [31:0] quotient;
|
||||
reg [31:0] quotient_msk;
|
||||
|
||||
wire divstep_do = (divisor <= {31'b0, dividend});
|
||||
|
||||
wire [31:0] dividendN = divstep_do ? dividend - divisor[31:0] : dividend;
|
||||
wire [31:0] quotientN = divstep_do ? quotient | quotient_msk : quotient;
|
||||
|
||||
wire div_sign = ~instr[12] & (instr[13] ? aluIn1[31] :
|
||||
(aluIn1[31] != aluIn2[31]) & |aluIn2);
|
||||
|
||||
always @(posedge clk) begin
|
||||
if (isDivide & aluWr) begin
|
||||
dividend <= ~instr[12] & aluIn1[31] ? -aluIn1 : aluIn1;
|
||||
divisor <= {(~instr[12] & aluIn2[31] ? -aluIn2 : aluIn2), 31'b0};
|
||||
quotient <= 0;
|
||||
quotient_msk <= 1 << 31;
|
||||
end else begin
|
||||
dividend <= dividendN;
|
||||
divisor <= divisor >> 1;
|
||||
quotient <= quotientN;
|
||||
quotient_msk <= quotient_msk >> 1;
|
||||
end
|
||||
end
|
||||
|
||||
reg [31:0] divResult;
|
||||
always @(posedge clk) begin
|
||||
divResult <= instr[13] ? dividendN : quotientN;
|
||||
end
|
||||
|
||||
/***************************************************************************/
|
||||
// The predicate for conditional branches.
|
||||
/***************************************************************************/
|
||||
|
||||
wire predicate =
|
||||
funct3Is[0] & EQ | // BEQ
|
||||
funct3Is[1] & !EQ | // BNE
|
||||
funct3Is[4] & LT | // BLT
|
||||
funct3Is[5] & !LT | // BGE
|
||||
funct3Is[6] & LTU | // BLTU
|
||||
funct3Is[7] & !LTU ; // BGEU
|
||||
|
||||
/***************************************************************************/
|
||||
// Program counter and branch target computation.
|
||||
/***************************************************************************/
|
||||
|
||||
reg [ADDR_WIDTH-1:0] PC; // The program counter.
|
||||
reg [31:2] instr; // Latched instruction. Note that bits 0 and 1 are
|
||||
// ignored (not used in RV32I base instr set).
|
||||
|
||||
wire [ADDR_WIDTH-1:0] PCplus2 = PC + 2;
|
||||
wire [ADDR_WIDTH-1:0] PCplus4 = PC + 4;
|
||||
wire [ADDR_WIDTH-1:0] PCinc = long_instr ? PCplus4 : PCplus2;
|
||||
|
||||
// An adder used to compute branch address, JAL address and AUIPC.
|
||||
// branch->PC+Bimm AUIPC->PC+Uimm JAL->PC+Jimm
|
||||
// Equivalent to PCplusImm = PC + (isJAL ? Jimm : isAUIPC ? Uimm : Bimm)
|
||||
wire [ADDR_WIDTH-1:0] PCplusImm = PC + ( instr[3] ? Jimm[ADDR_WIDTH-1:0] :
|
||||
instr[4] ? Uimm[ADDR_WIDTH-1:0] :
|
||||
Bimm[ADDR_WIDTH-1:0] );
|
||||
|
||||
// A separate adder to compute the destination of load/store.
|
||||
// testing instr[5] is equivalent to testing isStore in this context.
|
||||
wire [ADDR_WIDTH-1:0] loadstore_addr = rs1[ADDR_WIDTH-1:0] +
|
||||
(instr[5] ? Simm[ADDR_WIDTH-1:0] : Iimm[ADDR_WIDTH-1:0]);
|
||||
|
||||
/* verilator lint_off WIDTH */
|
||||
assign mem_addr = state[WAIT_INSTR_bit] | state[FETCH_INSTR_bit] ?
|
||||
fetch_second_half ? {PCplus4[ADDR_WIDTH-1:2], 2'b00}
|
||||
: {PC [ADDR_WIDTH-1:2], 2'b00}
|
||||
: loadstore_addr ;
|
||||
/* verilator lint_on WIDTH */
|
||||
|
||||
/***************************************************************************/
|
||||
// Interrupt logic, CSR registers and opcodes.
|
||||
/***************************************************************************/
|
||||
|
||||
// Remember interrupt requests as they are not checked for every cycle
|
||||
reg interrupt_request_sticky;
|
||||
|
||||
// Interrupt enable and lock logic
|
||||
wire interrupt = interrupt_request_sticky & mstatus & ~mcause;
|
||||
|
||||
// Processor accepts interrupts in EXECUTE state.
|
||||
wire interrupt_accepted = interrupt & state[EXECUTE_bit];
|
||||
|
||||
// If current interrupt is accepted, there already might be the next one,
|
||||
// which should not be missed:
|
||||
always @(posedge clk) begin
|
||||
interrupt_request_sticky <=
|
||||
interrupt_request | (interrupt_request_sticky & ~interrupt_accepted);
|
||||
end
|
||||
|
||||
// Decoder for mret opcode
|
||||
wire interrupt_return = isSYSTEM & funct3Is[0]; // & (instr[31:20]==12'h302);
|
||||
|
||||
// CSRs:
|
||||
reg [ADDR_WIDTH-1:0] mepc; // The saved program counter.
|
||||
reg [ADDR_WIDTH-1:0] mtvec; // The address of the interrupt handler.
|
||||
reg mstatus; // Interrupt enable
|
||||
reg mcause; // Interrupt cause (and lock)
|
||||
reg [63:0] cycles; // Cycle counter
|
||||
|
||||
always @(posedge clk) cycles <= cycles + 1;
|
||||
|
||||
wire sel_mstatus = (instr[31:20] == 12'h300);
|
||||
wire sel_mtvec = (instr[31:20] == 12'h305);
|
||||
wire sel_mepc = (instr[31:20] == 12'h341);
|
||||
wire sel_mcause = (instr[31:20] == 12'h342);
|
||||
wire sel_cycles = (instr[31:20] == 12'hC00);
|
||||
wire sel_cyclesh = (instr[31:20] == 12'hC80);
|
||||
|
||||
// Read CSRs
|
||||
/* verilator lint_off WIDTH */
|
||||
wire [31:0] CSR_read =
|
||||
(sel_mstatus ? {28'b0, mstatus, 3'b0} : 32'b0) |
|
||||
(sel_mtvec ? mtvec : 32'b0) |
|
||||
(sel_mepc ? mepc : 32'b0) |
|
||||
(sel_mcause ? {mcause, 31'b0} : 32'b0) |
|
||||
(sel_cycles ? cycles[31:0] : 32'b0) |
|
||||
(sel_cyclesh ? cycles[63:32] : 32'b0) ;
|
||||
/* verilator lint_on WIDTH */
|
||||
|
||||
// Write CSRs: 5 bit unsigned immediate or content of RS1
|
||||
wire [31:0] CSR_modifier = instr[14] ? {27'd0, instr[19:15]} : rs1;
|
||||
|
||||
wire [31:0] CSR_write = (instr[13:12] == 2'b10) ? CSR_modifier | CSR_read :
|
||||
(instr[13:12] == 2'b11) ? ~CSR_modifier & CSR_read :
|
||||
/* (instr[13:12] == 2'b01) ? */ CSR_modifier ;
|
||||
|
||||
always @(posedge clk) begin
|
||||
if(!reset) begin
|
||||
mstatus <= 0;
|
||||
end else begin
|
||||
// Execute a CSR opcode
|
||||
if (isSYSTEM & (instr[14:12] != 0) & state[EXECUTE_bit]) begin
|
||||
if (sel_mstatus) mstatus <= CSR_write[3];
|
||||
if (sel_mtvec ) mtvec <= CSR_write[ADDR_WIDTH-1:0];
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
/***************************************************************************/
|
||||
// The value written back to the register file.
|
||||
/***************************************************************************/
|
||||
|
||||
/* verilator lint_off WIDTH */
|
||||
wire [31:0] writeBackData =
|
||||
(isSYSTEM ? CSR_read : 32'b0) | // SYSTEM
|
||||
(isLUI ? Uimm : 32'b0) | // LUI
|
||||
(isALU ? aluOut : 32'b0) | // ALUreg, ALUimm
|
||||
(isAUIPC ? PCplusImm : 32'b0) | // AUIPC
|
||||
(isJALR | isJAL ? PCinc : 32'b0) | // JAL, JALR
|
||||
(isLoad ? LOAD_data : 32'b0); // Load
|
||||
/* verilator lint_on WIDTH */
|
||||
|
||||
/***************************************************************************/
|
||||
// LOAD/STORE
|
||||
/***************************************************************************/
|
||||
|
||||
// All memory accesses are aligned on 32 bits boundary. For this
|
||||
// reason, we need some circuitry that does unaligned halfword
|
||||
// and byte load/store, based on:
|
||||
// - funct3[1:0]: 00->byte 01->halfword 10->word
|
||||
// - mem_addr[1:0]: indicates which byte/halfword is accessed
|
||||
|
||||
wire mem_byteAccess = instr[13:12] == 2'b00; // funct3[1:0] == 2'b00;
|
||||
wire mem_halfwordAccess = instr[13:12] == 2'b01; // funct3[1:0] == 2'b01;
|
||||
|
||||
// LOAD, in addition to funct3[1:0], LOAD depends on:
|
||||
// - funct3[2] (instr[14]): 0->do sign expansion 1->no sign expansion
|
||||
|
||||
wire LOAD_sign =
|
||||
!instr[14] & (mem_byteAccess ? LOAD_byte[7] : LOAD_halfword[15]);
|
||||
|
||||
wire [31:0] LOAD_data =
|
||||
mem_byteAccess ? {{24{LOAD_sign}}, LOAD_byte} :
|
||||
mem_halfwordAccess ? {{16{LOAD_sign}}, LOAD_halfword} :
|
||||
mem_rdata ;
|
||||
|
||||
wire [15:0] LOAD_halfword =
|
||||
loadstore_addr[1] ? mem_rdata[31:16] : mem_rdata[15:0];
|
||||
|
||||
wire [7:0] LOAD_byte =
|
||||
loadstore_addr[0] ? LOAD_halfword[15:8] : LOAD_halfword[7:0];
|
||||
|
||||
// STORE
|
||||
|
||||
assign mem_wdata[ 7: 0] = rs2[7:0];
|
||||
assign mem_wdata[15: 8] = loadstore_addr[0] ? rs2[7:0] : rs2[15: 8];
|
||||
assign mem_wdata[23:16] = loadstore_addr[1] ? rs2[7:0] : rs2[23:16];
|
||||
assign mem_wdata[31:24] = loadstore_addr[0] ? rs2[7:0] :
|
||||
loadstore_addr[1] ? rs2[15:8] : rs2[31:24];
|
||||
|
||||
// The memory write mask:
|
||||
// 1111 if writing a word
|
||||
// 0011 or 1100 if writing a halfword
|
||||
// (depending on loadstore_addr[1])
|
||||
// 0001, 0010, 0100 or 1000 if writing a byte
|
||||
// (depending on loadstore_addr[1:0])
|
||||
|
||||
wire [3:0] STORE_wmask =
|
||||
mem_byteAccess ?
|
||||
(loadstore_addr[1] ?
|
||||
(loadstore_addr[0] ? 4'b1000 : 4'b0100) :
|
||||
(loadstore_addr[0] ? 4'b0010 : 4'b0001)
|
||||
) :
|
||||
mem_halfwordAccess ?
|
||||
(loadstore_addr[1] ? 4'b1100 : 4'b0011) :
|
||||
4'b1111;
|
||||
|
||||
/***************************************************************************/
|
||||
// Unaligned fetch mechanism and compressed opcode handling
|
||||
/***************************************************************************/
|
||||
|
||||
reg [ADDR_WIDTH-1:2] cached_addr;
|
||||
reg [31:0] cached_data;
|
||||
|
||||
wire current_cache_hit = cached_addr == PC [ADDR_WIDTH-1:2];
|
||||
wire next_cache_hit = cached_addr == PC_new [ADDR_WIDTH-1:2];
|
||||
|
||||
wire current_unaligned_long = &cached_mem [17:16] & PC [1];
|
||||
wire next_unaligned_long = &cached_data[17:16] & PC_new[1];
|
||||
|
||||
reg fetch_second_half;
|
||||
reg long_instr;
|
||||
|
||||
wire [31:0] cached_mem = current_cache_hit ? cached_data : mem_rdata;
|
||||
wire [31:0] decomp_input = PC[1] ? {mem_rdata[15:0], cached_mem[31:16]}
|
||||
: cached_mem;
|
||||
wire [31:0] decompressed;
|
||||
|
||||
decompressor _decomp ( .c(decomp_input), .d(decompressed) );
|
||||
|
||||
/*************************************************************************/
|
||||
// And, last but not least, the state machine.
|
||||
/*************************************************************************/
|
||||
|
||||
localparam FETCH_INSTR_bit = 0;
|
||||
localparam WAIT_INSTR_bit = 1;
|
||||
localparam EXECUTE_bit = 2;
|
||||
localparam WAIT_ALU_OR_MEM_bit = 3;
|
||||
localparam WAIT_ALU_OR_MEM_SKIP_bit = 4;
|
||||
|
||||
localparam NB_STATES = 5;
|
||||
|
||||
localparam FETCH_INSTR = 1 << FETCH_INSTR_bit;
|
||||
localparam WAIT_INSTR = 1 << WAIT_INSTR_bit;
|
||||
localparam EXECUTE = 1 << EXECUTE_bit;
|
||||
localparam WAIT_ALU_OR_MEM = 1 << WAIT_ALU_OR_MEM_bit;
|
||||
localparam WAIT_ALU_OR_MEM_SKIP = 1 << WAIT_ALU_OR_MEM_SKIP_bit;
|
||||
|
||||
(* onehot *)
|
||||
reg [NB_STATES-1:0] state;
|
||||
|
||||
// The signals (internal and external) that are determined
|
||||
// combinatorially from state and other signals.
|
||||
|
||||
// register write-back enable.
|
||||
wire writeBack = ~(isBranch | isStore ) & (
|
||||
state[EXECUTE_bit] |
|
||||
state[WAIT_ALU_OR_MEM_bit] |
|
||||
state[WAIT_ALU_OR_MEM_SKIP_bit]
|
||||
);
|
||||
|
||||
// The memory-read signal.
|
||||
assign mem_rstrb = state[EXECUTE_bit] & isLoad | state[FETCH_INSTR_bit];
|
||||
|
||||
// The mask for memory-write.
|
||||
assign mem_wmask = {4{state[EXECUTE_bit] & isStore}} & STORE_wmask;
|
||||
|
||||
// aluWr starts computation (divide) in the ALU.
|
||||
assign aluWr = state[EXECUTE_bit] & isALU;
|
||||
|
||||
wire jumpToPCplusImm = isJAL | (isBranch & predicate);
|
||||
|
||||
wire needToWait = isLoad | isStore | isDivide;
|
||||
|
||||
wire [ADDR_WIDTH-1:0] PC_new =
|
||||
isJALR ? {aluPlus[ADDR_WIDTH-1:1],1'b0} :
|
||||
jumpToPCplusImm ? PCplusImm :
|
||||
interrupt_return ? mepc :
|
||||
PCinc;
|
||||
|
||||
always @(posedge clk) begin
|
||||
if(!reset) begin
|
||||
state <= WAIT_ALU_OR_MEM; //Just waiting for !mem_wbusy
|
||||
PC <= RESET_ADDR[ADDR_WIDTH-1:0];
|
||||
mcause <= 0;
|
||||
cached_addr <= {ADDR_WIDTH-2{1'b1}};//Needs to be an invalid addr
|
||||
fetch_second_half <= 0;
|
||||
end else begin
|
||||
|
||||
// See note [1] at the end of this file.
|
||||
(* parallel_case *)
|
||||
case(1'b1)
|
||||
|
||||
state[WAIT_INSTR_bit]: begin
|
||||
if(!mem_rbusy) begin // may be high when executing from SPI flash
|
||||
// Update cache
|
||||
if (~current_cache_hit | fetch_second_half) begin
|
||||
cached_addr <= mem_addr[ADDR_WIDTH-1:2];
|
||||
cached_data <= mem_rdata;
|
||||
end;
|
||||
|
||||
// Decode instruction
|
||||
rs1 <= registerFile[decompressed[19:15]];
|
||||
rs2 <= registerFile[decompressed[24:20]];
|
||||
instr <= decompressed[31:2];
|
||||
long_instr <= &decomp_input[1:0];
|
||||
|
||||
// Long opcode, unaligned, first part fetched,
|
||||
// happens in non-linear code
|
||||
if (current_unaligned_long & ~fetch_second_half) begin
|
||||
fetch_second_half <= 1;
|
||||
state <= FETCH_INSTR;
|
||||
end else begin
|
||||
fetch_second_half <= 0;
|
||||
state <= EXECUTE;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
state[EXECUTE_bit]: begin
|
||||
if (interrupt) begin
|
||||
PC <= mtvec;
|
||||
mepc <= PC_new;
|
||||
mcause <= 1;
|
||||
state <= needToWait ? WAIT_ALU_OR_MEM : FETCH_INSTR;
|
||||
end else begin
|
||||
PC <= PC_new;
|
||||
if (interrupt_return) mcause <= 0;
|
||||
|
||||
state <= next_cache_hit & ~next_unaligned_long
|
||||
? (needToWait ? WAIT_ALU_OR_MEM_SKIP : WAIT_INSTR)
|
||||
: (needToWait ? WAIT_ALU_OR_MEM : FETCH_INSTR);
|
||||
|
||||
fetch_second_half <= next_cache_hit & next_unaligned_long;
|
||||
end
|
||||
end
|
||||
|
||||
state[WAIT_ALU_OR_MEM_bit]: begin
|
||||
if(!aluBusy & !mem_rbusy & !mem_wbusy) state <= FETCH_INSTR;
|
||||
end
|
||||
|
||||
state[WAIT_ALU_OR_MEM_SKIP_bit]: begin
|
||||
if(!aluBusy & !mem_rbusy & !mem_wbusy) state <= WAIT_INSTR;
|
||||
end
|
||||
|
||||
default: begin // FETCH_INSTR
|
||||
state <= WAIT_INSTR;
|
||||
end
|
||||
endcase
|
||||
end
|
||||
end
|
||||
|
||||
`ifdef BENCH
|
||||
initial begin
|
||||
cycles = 0;
|
||||
registerFile[0] = 0;
|
||||
end
|
||||
`endif
|
||||
|
||||
endmodule
|
||||
|
||||
/*****************************************************************************/
|
||||
|
||||
// if c[15:0] is a compressed instrution, decompresses it in d
|
||||
// else copies c to d
|
||||
module decompressor(
|
||||
input wire [31:0] c,
|
||||
output reg [31:0] d
|
||||
);
|
||||
|
||||
// How to handle illegal and unknown opcodes
|
||||
|
||||
localparam illegal = 32'h00000000;
|
||||
localparam unknown = 32'h00000000;
|
||||
|
||||
// Register decoder
|
||||
|
||||
wire [4:0] rcl = {2'b01, c[4:2]}; // Register compressed low
|
||||
wire [4:0] rch = {2'b01, c[9:7]}; // Register compressed high
|
||||
|
||||
wire [4:0] rwl = c[ 6:2]; // Register wide low
|
||||
wire [4:0] rwh = c[11:7]; // Register wide high
|
||||
|
||||
localparam x0 = 5'b00000;
|
||||
localparam x1 = 5'b00001;
|
||||
localparam x2 = 5'b00010;
|
||||
|
||||
// Immediate decoder
|
||||
|
||||
wire [4:0] shiftImm = c[6:2];
|
||||
|
||||
wire [11:0] addi4spnImm = {2'b00, c[10:7], c[12:11], c[5], c[6], 2'b00};
|
||||
wire [11:0] lwswImm = {5'b00000, c[5], c[12:10] , c[6], 2'b00};
|
||||
wire [11:0] lwspImm = {4'b0000, c[3:2], c[12], c[6:4], 2'b00};
|
||||
wire [11:0] swspImm = {4'b0000, c[8:7], c[12:9], 2'b00};
|
||||
|
||||
wire [11:0] addi16spImm = {{ 3{c[12]}}, c[4:3], c[5], c[2], c[6], 4'b0000};
|
||||
wire [11:0] addImm = {{ 7{c[12]}}, c[6:2]};
|
||||
|
||||
/* verilator lint_off UNUSED */
|
||||
wire [12:0] bImm = {{ 5{c[12]}}, c[6:5], c[2], c[11:10], c[4:3], 1'b0};
|
||||
wire [20:0] jalImm = {{10{c[12]}}, c[8], c[10:9], c[6], c[7], c[2], c[11], c[5:3], 1'b0};
|
||||
wire [31:0] luiImm = {{15{c[12]}}, c[6:2], 12'b000000000000};
|
||||
/* verilator lint_on UNUSED */
|
||||
|
||||
always @*
|
||||
casez (c[15:0])
|
||||
// imm / funct7 + rs2 rs1 fn3 rd opcode
|
||||
16'b???___????????_???_11 : d = c ; // Long opcode, no need to decompress
|
||||
|
||||
/* verilator lint_off CASEOVERLAP */
|
||||
|
||||
16'b000___00000000_000_00 : d = illegal ; // c.illegal --> illegal
|
||||
16'b000___????????_???_00 : d = { addi4spnImm, x2, 3'b000, rcl, 7'b00100_11} ; // c.addi4spn --> addi rd', x2, nzuimm[9:2]
|
||||
/* verilator lint_on CASEOVERLAP */
|
||||
|
||||
16'b010_???_???_??_???_00 : d = { lwswImm, rch, 3'b010, rcl, 7'b00000_11} ; // c.lw --> lw rd', offset[6:2](rs1')
|
||||
16'b110_???_???_??_???_00 : d = { lwswImm[11:5], rcl, rch, 3'b010, lwswImm[4:0], 7'b01000_11} ; // c.sw --> sw rs2', offset[6:2](rs1')
|
||||
|
||||
16'b000_???_???_??_???_01 : d = { addImm, rwh, 3'b000, rwh, 7'b00100_11} ; // c.addi --> addi rd, rd, nzimm[5:0]
|
||||
16'b001____???????????_01 : d = { jalImm[20], jalImm[10:1], jalImm[11], jalImm[19:12], x1, 7'b11011_11} ; // c.jal --> jal x1, offset[11:1]
|
||||
16'b010__?_?????_?????_01 : d = { addImm, x0, 3'b000, rwh, 7'b00100_11} ; // c.li --> addi rd, x0, imm[5:0]
|
||||
16'b011__?_00010_?????_01 : d = { addi16spImm, rwh, 3'b000, rwh, 7'b00100_11} ; // c.addi16sp --> addi x2, x2, nzimm[9:4]
|
||||
16'b011__?_?????_?????_01 : d = { luiImm[31:12], rwh, 7'b01101_11} ; // c.lui --> lui rd, nzuimm[17:12]
|
||||
16'b100_?_00_???_?????_01 : d = { 7'b0000000, shiftImm, rch, 3'b101, rch, 7'b00100_11} ; // c.srli --> srli rd', rd', shamt[5:0]
|
||||
16'b100_?_01_???_?????_01 : d = { 7'b0100000, shiftImm, rch, 3'b101, rch, 7'b00100_11} ; // c.srai --> srai rd', rd', shamt[5:0]
|
||||
16'b100_?_10_???_?????_01 : d = { addImm, rch, 3'b111, rch, 7'b00100_11} ; // c.andi --> andi rd', rd', imm[5:0]
|
||||
16'b100_011_???_00_???_01 : d = { 7'b0100000, rcl, rch, 3'b000, rch, 7'b01100_11} ; // c.sub --> sub rd', rd', rs2'
|
||||
16'b100_011_???_01_???_01 : d = { 7'b0000000, rcl, rch, 3'b100, rch, 7'b01100_11} ; // c.xor --> xor rd', rd', rs2'
|
||||
16'b100_011_???_10_???_01 : d = { 7'b0000000, rcl, rch, 3'b110, rch, 7'b01100_11} ; // c.or --> or rd', rd', rs2'
|
||||
16'b100_011_???_11_???_01 : d = { 7'b0000000, rcl, rch, 3'b111, rch, 7'b01100_11} ; // c.and --> and rd', rd', rs2'
|
||||
16'b101____???????????_01 : d = { jalImm[20], jalImm[10:1], jalImm[11], jalImm[19:12], x0, 7'b11011_11} ; // c.j --> jal x0, offset[11:1]
|
||||
16'b110__???_???_?????_01 : d = {bImm[12], bImm[10:5], x0, rch, 3'b000, bImm[4:1], bImm[11], 7'b11000_11} ; // c.beqz --> beq rs1', x0, offset[8:1]
|
||||
16'b111__???_???_?????_01 : d = {bImm[12], bImm[10:5], x0, rch, 3'b001, bImm[4:1], bImm[11], 7'b11000_11} ; // c.bnez --> bne rs1', x0, offset[8:1]
|
||||
|
||||
16'b000__?_?????_?????_10 : d = { 7'b0000000, shiftImm, rwh, 3'b001, rwh, 7'b00100_11} ; // c.slli --> slli rd, rd, shamt[5:0]
|
||||
16'b010__?_?????_?????_10 : d = { lwspImm, x2, 3'b010, rwh, 7'b00000_11} ; // c.lwsp --> lw rd, offset[7:2](x2)
|
||||
16'b100__0_?????_00000_10 : d = { 12'b000000000000, rwh, 3'b000, x0, 7'b11001_11} ; // c.jr --> jalr x0, rs1, 0
|
||||
16'b100__0_?????_?????_10 : d = { 7'b0000000, rwl, x0, 3'b000, rwh, 7'b01100_11} ; // c.mv --> add rd, x0, rs2
|
||||
// 16'b100__1_00000_00000_10 : d = { 25'b00000000_00010000_00000000_0, 7'b11100_11} ; // c.ebreak --> ebreak
|
||||
16'b100__1_?????_00000_10 : d = { 12'b000000000000, rwh, 3'b000, x1, 7'b11001_11} ; // c.jalr --> jalr x1, rs1, 0
|
||||
16'b100__1_?????_?????_10 : d = { 7'b0000000, rwl, rwh, 3'b000, rwh, 7'b01100_11} ; // c.add --> add rd, rd, rs2
|
||||
16'b110__?_?????_?????_10 : d = { swspImm[11:5], rwl, x2, 3'b010, swspImm[4:0], 7'b01000_11} ; // c.swsp --> sw rs2, offset[7:2](x2)
|
||||
|
||||
default: d = unknown ; // Unknown opcode
|
||||
endcase
|
||||
endmodule
|
||||
|
||||
/*****************************************************************************/
|
||||
// Notes:
|
||||
//
|
||||
// [1] About the "reverse case" statement, also used in Claire Wolf's picorv32:
|
||||
// It is just a cleaner way of writing a series of cascaded if() statements,
|
||||
// To understand it, think about the case statement *in general* as follows:
|
||||
// case (expr)
|
||||
// val_1: statement_1
|
||||
// val_2: statement_2
|
||||
// ... val_n: statement_n
|
||||
// endcase
|
||||
// The first statement_i such that expr == val_i is executed.
|
||||
// Now if expr is 1'b1:
|
||||
// case (1'b1)
|
||||
// cond_1: statement_1
|
||||
// cond_2: statement_2
|
||||
// ... cond_n: statement_n
|
||||
// endcase
|
||||
// It is *exactly the same thing*, the first statement_i such that
|
||||
// expr == cond_i is executed (that is, such that 1'b1 == cond_i,
|
||||
// in other words, such that cond_i is true)
|
||||
// More on this:
|
||||
// https://stackoverflow.com/questions/15418636/case-statement-in-verilog
|
||||
//
|
||||
// [2] state uses 1-hot encoding (at any time, state has only one bit set to 1).
|
||||
// It uses a larger number of bits (one bit per state), but often results in
|
||||
// a both more compact (fewer LUTs) and faster state machine.
|
||||
Reference in New Issue
Block a user