183 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			183 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // donut.c by Andy Sloane (@a1k0n)
 | |
| // https://gist.github.com/a1k0n/8ea6516b4946ab36348fb61703dc3194
 | |
| 
 | |
| #include <stdint.h>
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <unistd.h>
 | |
| #include <math.h>
 | |
| 
 | |
| #define WITH_RV32M
 | |
| 
 | |
| #define debug(...)
 | |
| //#define debug printf
 | |
| 
 | |
| // torus radii and distance from camera
 | |
| // these are pretty baked-in to other constants now, so it probably won't work
 | |
| // if you change them too much.
 | |
| const int dz = 5, r1 = 1, r2 = 2;
 | |
| 
 | |
| // "Magic circle algorithm"? DDA? I've seen this formulation in a few places;
 | |
| // first in Hal Chamberlain's Musical Applications of Microprocessors, but not
 | |
| // sure what to call it, or how to justify it theoretically. It seems to
 | |
| // correctly rotate around a point "near" the origin, without losing magnitude
 | |
| // over long periods of time, as long as there are enough bits of precision in x
 | |
| // and y. I use 14 bits here.
 | |
| #define R(s,x,y) x-=(y>>s); y+=(x>>s)
 | |
| 
 | |
| // CORDIC algorithm to find magnitude of |x,y| by rotating the x,y vector onto
 | |
| // the x axis. This also brings vector (x2,y2) along for the ride, and writes
 | |
| // back to x2 -- this is used to rotate the lighting vector from the normal of
 | |
| // the torus surface towards the camera, and thus determine the lighting amount.
 | |
| // We only need to keep one of the two lighting normal coordinates.
 | |
| int length_cordic(int16_t x, int16_t y, int16_t *x2_, int16_t y2) {
 | |
|   int x2 = *x2_;
 | |
|   if (x < 0) { // start in right half-plane
 | |
|     x = -x;
 | |
|     x2 = -x2;
 | |
|   }
 | |
|   for (int i = 0; i < 8; i++) {
 | |
|     int t = x;
 | |
|     int t2 = x2;
 | |
|     if (y < 0) {
 | |
|       x -= y >> i;
 | |
|       y += t >> i;
 | |
|       x2 -= y2 >> i;
 | |
|       y2 += t2 >> i;
 | |
|     } else {
 | |
|       x += y >> i;
 | |
|       y -= t >> i;
 | |
|       x2 += y2 >> i;
 | |
|       y2 -= t2 >> i;
 | |
|     }
 | |
|   }
 | |
|   // divide by 0.625 as a cheap approximation to the 0.607 scaling factor factor
 | |
|   // introduced by this algorithm (see https://en.wikipedia.org/wiki/CORDIC)
 | |
|   *x2_ = (x2 >> 1) + (x2 >> 3);
 | |
|   return (x >> 1) + (x >> 3);
 | |
| }
 | |
| 
 | |
| void main() {
 | |
|   // high-precision rotation directions, sines and cosines and their products
 | |
|   int16_t sB = 0, cB = 16384;
 | |
|   int16_t sA = 11583, cA = 11583;
 | |
|   int16_t sAsB = 0, cAsB = 0;
 | |
|   int16_t sAcB = 11583, cAcB = 11583;
 | |
| 
 | |
|   for (;;) {
 | |
|     int x1_16 = cAcB << 2;
 | |
| 
 | |
|     // yes this is a multiply but dz is 5 so it's (sb + (sb<<2)) >> 6 effectively
 | |
|     int p0x = dz * sB >> 6;
 | |
|     int p0y = dz * sAcB >> 6;
 | |
|     int p0z = -dz * cAcB >> 6;
 | |
| 
 | |
|     const int r1i = r1*256;
 | |
|     const int r2i = r2*256;
 | |
| 
 | |
|     int niters = 0;
 | |
|     int nnormals = 0;
 | |
|     int16_t yincC = (cA >> 6) + (cA >> 5);      // 12*cA >> 8;
 | |
|     int16_t yincS = (sA >> 6) + (sA >> 5);      // 12*sA >> 8;
 | |
|     int16_t xincX = (cB >> 7) + (cB >> 6);      // 6*cB >> 8;
 | |
|     int16_t xincY = (sAsB >> 7) + (sAsB >> 6);  // 6*sAsB >> 8;
 | |
|     int16_t xincZ = (cAsB >> 7) + (cAsB >> 6);  // 6*cAsB >> 8;
 | |
|     int16_t ycA = -((cA >> 1) + (cA >> 4));     // -12 * yinc1 = -9*cA >> 4;
 | |
|     int16_t ysA = -((sA >> 1) + (sA >> 4));     // -12 * yinc2 = -9*sA >> 4;
 | |
|     //int dmin = INT_MAX, dmax = -INT_MAX;
 | |
|     for (int j = 0; j < 23; j++, ycA += yincC, ysA += yincS) {
 | |
|       int xsAsB = (sAsB >> 4) - sAsB;  // -40*xincY
 | |
|       int xcAsB = (cAsB >> 4) - cAsB;  // -40*xincZ;
 | |
| 
 | |
|       int16_t vxi14 = (cB >> 4) - cB - sB; // -40*xincX - sB;
 | |
|       int16_t vyi14 = ycA - xsAsB - sAcB;
 | |
|       int16_t vzi14 = ysA + xcAsB + cAcB;
 | |
| 
 | |
|       for (int i = 0; i < 79; i++, vxi14 += xincX, vyi14 -= xincY, vzi14 += xincZ) {
 | |
|         int t = 512; // (256 * dz) - r2i - r1i;
 | |
| 
 | |
|         int16_t px = p0x + (vxi14 >> 5); // assuming t = 512, t*vxi>>8 == vxi<<1
 | |
|         int16_t py = p0y + (vyi14 >> 5);
 | |
|         int16_t pz = p0z + (vzi14 >> 5);
 | |
|         debug("pxyz (%+4d,%+4d,%+4d)\n", px, py, pz);
 | |
|         int16_t lx0 = sB >> 2;
 | |
|         int16_t ly0 = sAcB - cA >> 2;
 | |
|         int16_t lz0 = -cAcB - sA >> 2;
 | |
|         for (;;) {
 | |
|           int t0, t1, t2, d;
 | |
|           int16_t lx = lx0, ly = ly0, lz = lz0;
 | |
|           debug("[%2d,%2d] (px, py) = (%d, %d), (lx, ly) = (%d, %d) -> ", j, i, px, py, lx, ly);
 | |
|           t0 = length_cordic(px, py, &lx, ly);
 | |
|           debug("t0=%d (lx', ly') = (%d, %d)\n", t0, lx, ly);
 | |
|           t1 = t0 - r2i;
 | |
|           t2 = length_cordic(pz, t1, &lz, lx);
 | |
|           d = t2 - r1i;
 | |
|           t += d;
 | |
| 
 | |
|           if (t > 8*256) {
 | |
|             putchar(' ');
 | |
|             break;
 | |
|           } else if (d < 2) {
 | |
|             int N = lz >> 9;
 | |
|             putchar(".,-~:;!*=#$@"[N > 0 ? N < 12 ? N : 11 : 0]);
 | |
|             nnormals++;
 | |
|             break;
 | |
|           }
 | |
|           // todo: shift and add version of this
 | |
| 
 | |
| 	   
 | |
|           /*
 | |
|             if (d < dmin) dmin = d;
 | |
|             if (d > dmax) dmax = d;
 | |
| 	   */
 | |
| 
 | |
| #ifdef WITH_RV32M	   
 | |
|             px += d*vxi14 >> 14;
 | |
|             py += d*vyi14 >> 14;
 | |
|             pz += d*vzi14 >> 14;
 | |
| #else
 | |
|           {
 | |
|             // 11x1.14 fixed point 3x parallel multiply
 | |
|             // only 16 bit registers needed; starts from highest bit to lowest
 | |
|             // d is about 2..1100, so 11 bits are sufficient
 | |
|             int16_t dx = 0, dy = 0, dz = 0;
 | |
|             int16_t a = vxi14, b = vyi14, c = vzi14;
 | |
|             while (d) {
 | |
|               if (d&1024) {
 | |
|                 dx += a;
 | |
|                 dy += b;
 | |
|                 dz += c;
 | |
|               }
 | |
|               d = (d&1023) << 1;
 | |
|               a >>= 1;
 | |
|               b >>= 1;
 | |
|               c >>= 1;
 | |
|             }
 | |
|             // we already shifted down 10 bits, so get the last four
 | |
|             px += dx >> 4;
 | |
|             py += dy >> 4;
 | |
|             pz += dz >> 4;
 | |
|           }
 | |
| #endif
 | |
|           niters++;
 | |
|         }
 | |
|       }
 | |
|       puts("");
 | |
|     }
 | |
|     printf("%d iterations %d lit pixels\x1b[K", niters, nnormals);
 | |
| //    fflush(stdout);
 | |
| 
 | |
|     // rotate sines, cosines, and products thereof
 | |
|     // this animates the torus rotation about two axes
 | |
|     R(5, cA, sA);
 | |
|     R(5, cAsB, sAsB);
 | |
|     R(5, cAcB, sAcB);
 | |
|     R(6, cB, sB);
 | |
|     R(6, cAcB, cAsB);
 | |
|     R(6, sAcB, sAsB);
 | |
| 
 | |
| //    usleep(15000);
 | |
|     printf("\r\x1b[23A");
 | |
|   }
 | |
| }
 |